Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЦТ — математика
Вариант № 74
1.  
i

Ука­жи­те номер ри­сун­ка, на ко­то­ром изоб­ра­жен рав­но­бед­рен­ный тре­уголь­ник.

1)

2)

3)

4)

5)

1) 1
2) 2
3) 3
4) 4
5) 5
2.  
i

Ука­жи­те вер­ное ра­вен­ство:

1)  ло­га­рифм по ос­но­ва­нию 3 9=3
2)  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 28 пра­вая круг­лая скоб­ка 28=0
3) 5 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 3 5 пра­вая круг­лая скоб­ка =3
4)  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 53 пра­вая круг­лая скоб­ка 53=53
5)  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 15 пра­вая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 15 конец дроби = минус 1
3.  
i

Среди точек B левая круг­лая скоб­ка 6;0 пра­вая круг­лая скоб­ка , O левая круг­лая скоб­ка 0;0 пра­вая круг­лая скоб­ка , M левая круг­лая скоб­ка минус ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та ; ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та пра­вая круг­лая скоб­ка , C левая круг­лая скоб­ка минус 5;6 пра­вая круг­лая скоб­ка , D левая круг­лая скоб­ка 0; минус 6 пра­вая круг­лая скоб­ка вы­бе­ри­те ту, ко­то­рая при­над­ле­жит гра­фи­ку функ­ции, изоб­ражённому на ри­сун­ке:

1) B
2) O
3) M
4) C
5) D
4.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  левая круг­лая скоб­ка целая часть: 1, дроб­ная часть: чис­ли­тель: 5, зна­ме­на­тель: 7 минус целая часть: 1, дроб­ная часть: чис­ли­тель: 3, зна­ме­на­тель: 28 пра­вая круг­лая скоб­ка умно­жить на 5,6 минус 4,5.

1) −7,9
2) −1,1
3) 7,8
4) 0,6
5) 1,1
5.  
i

Если 10 в квад­ра­те умно­жить на альфа =537,61278, то зна­че­ние α с точ­но­стью до сотых равно:

1) 5,37
2) 53,76
3) 5,38
4) 53761,28
5) 5376,13
6.  
i

Ука­жи­те номер ри­сун­ка, на ко­то­ром по­ка­за­но мно­же­ство ре­ше­ний си­сте­мы не­ра­венств  си­сте­ма вы­ра­же­ний x\leqslant минус 1,6,1 минус 2x мень­ше 9. конец си­сте­мы .

1)  

2)  

3)  

4)  

5)  

1) 1
2) 2
3) 3
4) 4
5) 5
7.  
i

Ре­ши­те не­ра­вен­ство | минус x|\geqslant5.

1) x при­над­ле­жит левая квад­рат­ная скоб­ка 5; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2) x при­над­ле­жит левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 5 пра­вая квад­рат­ная скоб­ка
3) x при­над­ле­жит левая квад­рат­ная скоб­ка минус 5;5 пра­вая квад­рат­ная скоб­ка
4) x при­над­ле­жит левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 5 пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 5; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
5) x_1= минус 5, x_2=5
8.  
i

Пусть a  =  5,4; b  =  3,2 · 101. Най­ди­те про­из­ве­де­ние ab и за­пи­ши­те его в стан­дарт­ном виде.

1) 0,1728 умно­жить на 10 в кубе
2) 1728 умно­жить на 10 в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
3) 1,728 умно­жить на 10 в квад­ра­те
4) 1,728
5) 172,8
9.  
i

Зна­че­ние вы­ра­же­ния 2 в сте­пе­ни левая круг­лая скоб­ка минус 8 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка 2 в сте­пе­ни левая круг­лая скоб­ка минус 5 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 2 пра­вая круг­лая скоб­ка равно:

1) 4
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби
3) 2 в сте­пе­ни левая круг­лая скоб­ка минус 15 пра­вая круг­лая скоб­ка
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
5) 2 в сте­пе­ни левая круг­лая скоб­ка минус 18 пра­вая круг­лая скоб­ка
10.  
i

Най­ди­те наи­мень­ший по­ло­жи­тель­ный ко­рень урав­не­ния  синус 2x= дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 2 конец дроби .

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби
5)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби
11.  
i

Даны два числа. Из­вест­но, что одно из них мень­ше дру­го­го на 6. Ка­ко­му усло­вию удо­вле­тво­ря­ет мень­шее число x, если его удво­ен­ный квад­рат не боль­ше суммы квад­ра­тов этих чисел?

1) x\le3
2) x\le минус 3
3) x\ge минус 3
4) x\ge3
5) x\le12
12.  
i

На одной чаше урав­но­ве­шен­ных весов лежат 4 яб­ло­ка и 2 груши, на дру­гой  — 2 яб­ло­ка, 4 груши и гирь­ка весом 80 г. Каков вес одной груши (в грам­мах), если все фрук­ты вме­сте весят 1500 г? Счи­тай­те все яб­ло­ки оди­на­ко­вы­ми по весу и все груши оди­на­ко­вы­ми по весу.

1) 95
2) 100
3) 105
4) 115
5) 110
13.  
i

Най­ди­те длину сред­ней линии пря­мо­уголь­ной тра­пе­ции с ост­рым углом 60°, у ко­то­рой боль­шая бо­ко­вая сто­ро­на и боль­шее ос­но­ва­ние равны 10.

1) 5 ко­рень из 3
2) 10 ко­рень из 3
3) 15
4) 5
5) 7,5
14.  
i

Из­вест­но, что наи­мень­шее зна­че­ние функ­ции, за­дан­ной фор­му­лой y  =  x2 + 8x + c, равно −3. Тогда зна­че­ние c равно:

1) 13
2) 16
3)  минус 51
4)  минус 19
5) 19
15.  
i

Най­ди­те сумму целых ре­ше­ний не­ра­вен­ства 4 левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка боль­ше левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те .

1) 12
2) −20
3) 0
4) 20
5) −12
16.  
i

Какая из пря­мых пе­ре­се­ка­ет гра­фик функ­ции y= дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби x в квад­ра­те плюс 2x плюс 7 в двух точ­ках?

1) y=5,3
2) y= минус 2,1
3) y=0
4) y=4
5) y= минус 3
17.  
i

Гра­фик функ­ции, за­дан­ной фор­му­лой y  =  kx + b, сим­мет­ри­чен от­но­си­тель­но оси Oy и про­хо­дит через точку A левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби ; 6 пра­вая круг­лая скоб­ка . Зна­че­ние вы­ра­же­ния k + b равно:

1)  минус целая часть: 5, дроб­ная часть: чис­ли­тель: 2, зна­ме­на­тель: 3
2)  целая часть: 6, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 3
3) 6
4) 2
5) 18
18.  
i

Най­ди­те наи­мень­ший по­ло­жи­тель­ный ко­рень урав­не­ния 4 синус в квад­ра­те x плюс 12 ко­си­нус x минус 9=0.

1)  дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби
2)  арк­ко­си­нус дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби
5)  Пи минус арк­ко­си­нус дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби
19.  
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния  дробь: чис­ли­тель: 3, зна­ме­на­тель: x минус 2 конец дроби плюс 1= дробь: чис­ли­тель: 10, зна­ме­на­тель: x в квад­ра­те минус 4x плюс 4 конец дроби .

20.  
i

Най­ди­те ко­ли­че­ство всех целых ре­ше­ний не­ра­вен­ства  дробь: чис­ли­тель: 16x минус x в кубе , зна­ме­на­тель: 5x конец дроби боль­ше 0.

21.  
i

В окруж­ность ра­ди­у­сом 6 впи­сан тре­уголь­ник, длины двух сто­рон ко­то­ро­го равны 6 и 10. Най­ди­те длину вы­со­ты тре­уголь­ни­ка, про­ве­ден­ной к его тре­тьей сто­ро­не.

22.  
i

Най­ди­те сумму целых ре­ше­ний не­ра­вен­ства 5 в сте­пе­ни левая круг­лая скоб­ка 3x плюс 1 пра­вая круг­лая скоб­ка минус 26 умно­жить на 25 в сте­пе­ни x плюс 5 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка \leqslant0.

23.  
i

Най­ди­те сумму кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния  ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те плюс 3x конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: 1 минус x конец ар­гу­мен­та = ко­рень из: на­ча­ло ар­гу­мен­та: 12 минус x конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: 1 минус x конец ар­гу­мен­та .

24.  
i

Най­ди­те ко­ли­че­ство кор­ней урав­не­ния 32 синус 2x плюс 8 ко­си­нус 4x=23 на про­ме­жут­ке  левая квад­рат­ная скоб­ка минус Пи ; дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 4 конец дроби пра­вая квад­рат­ная скоб­ка .

25.  
i

Гео­мет­ри­че­ская про­грес­сия со зна­ме­на­те­лем 9 со­дер­жит 10 чле­нов. Сумма всех чле­ном про­грес­сии равна 50. Най­ди­те сумму всех чле­нов про­грес­сии с чет­ны­ми но­ме­ра­ми.

26.  
i

Най­ди­те зна­че­ние вы­ра­же­ния 6 синус левая круг­лая скоб­ка альфа минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка , если  синус 2 альфа = дробь: чис­ли­тель: 1, зна­ме­на­тель: 9 конец дроби , 2 альфа при­над­ле­жит левая круг­лая скоб­ка 0; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка .

27.  
i

Най­ди­те сумму целых зна­че­ний x, при­над­ле­жа­щих об­ла­сти опре­де­ле­ния функ­ции

y= ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 2 минус x пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 12 минус x минус x в квад­ра­те пра­вая круг­лая скоб­ка .

28.  
i

Пря­мо­уголь­ный тре­уголь­ник с ка­те­та­ми, рав­ны­ми 1 и 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , вра­ща­ет­ся во­круг оси, со­дер­жа­щей его ги­по­те­ну­зу. Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 9V, зна­ме­на­тель: Пи конец дроби , где V  — объём фи­гу­ры вра­ще­ния.

29.  
i

Ко­ли­че­ство целых ре­ше­ний не­ра­вен­ства 5 в сте­пе­ни левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 23 минус x пра­вая круг­лая скоб­ка боль­ше 3 равно ...

30.  
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния x минус ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 64 конец ар­гу­мен­та = дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 8 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: 2x плюс 16 конец дроби .